首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   15篇
林业   13篇
农学   4篇
  5篇
综合类   12篇
农作物   7篇
水产渔业   10篇
畜牧兽医   20篇
园艺   1篇
植物保护   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1970年   1篇
  1961年   1篇
  1954年   1篇
  1903年   1篇
  1898年   1篇
  1897年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
41.
Ecosystem‐based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem‐based management in six case‐study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular, we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case‐studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context, but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case‐studies include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem‐based management.  相似文献   
42.
The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6 degrees S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.  相似文献   
43.
44.
45.
46.
Angiotensin II (AngII) mediates progression of aortic aneurysm, but the relative contribution of its type 1 (AT1) and type 2 (AT2) receptors remains unknown. We show that loss of AT2 expression accelerates the aberrant growth and rupture of the aorta in a mouse model of Marfan syndrome (MFS). The selective AT1 receptor blocker (ARB) losartan abrogated aneurysm progression in the mice; full protection required intact AT2 signaling. The angiotensin-converting enzyme inhibitor (ACEi) enalapril, which limits signaling through both receptors, was less effective. Both drugs attenuated canonical transforming growth factor-β (TGFβ) signaling in the aorta, but losartan uniquely inhibited TGFβ-mediated activation of extracellular signal-regulated kinase (ERK), by allowing continued signaling through AT2. These data highlight the protective nature of AT2 signaling and potentially inform the choice of therapies in MFS and related disorders.  相似文献   
47.
48.
Secondary forests are gaining increased importance in tropical landscapes and have recently been reported to act as potential belowground carbon sinks. While economic interest in the management of secondary forests to mitigate carbon emissions is rising, the dynamics of soil carbon stocks under these ecosystems remain poorly understood. Recent studies report conflicting results concerning soil carbon trends as well as multiple confounding factors (e.g. soil type, topography and land-use history) affecting these trends. In this study, organic carbon stocks were measured in the mineral soil up to 20 cm depth of at 24 active pastures, 5-8-year-old, and 12-15-year-old secondary forest sites on former pastures. Additionally, we estimated carbon stocks under a 100-year-old secondary forest and compared them to those of nearby mature forests. Abiotic conditions in the study area were homogenous, enabling us to isolate the effect of land-use change on soil organic carbon stocks. Contrary to our expectations, soil carbon stocks in the top 10 cm did not change with young secondary forest development. Pasture soils stored 24.8 ± 2.9 Mg ha−1 carbon (mean ± standard error) in the top 10 cm, and no accumulation of soil carbon was apparent during the first 15 years of secondary succession. Soil carbon stocks under 100-year-old secondary forests, averaging 43.0 ± 7.9 Mg ha−1 (mean ± standard error), were clearly higher than those recorded at younger sites and approached levels of soil carbon stocks under mature forests. These data indicate that soil carbon stocks in this region of Panama are not affected by the land-use transition from pasture to young secondary regrowth. However, an increase of soil carbon storage might be possible over a longer period of time. Our results support trends observed in other tropical areas and highlight the importance of environmental conditions such as soil properties rather than land-use transitions on soil carbon dynamics. While our understanding of organic carbon dynamics in tropical soils remains limited, these results underscore the challenges of undertaking short-term reforestation projects with the expectation of increasing soil carbon sequestration.  相似文献   
49.
Reforestation in the tropics takes place across a wide variety of edaphic and climatic conditions. Reforestation trials have demonstrated that edaphic conditions may have a strong effect on species growth and survival. However it is unclear how the relative importance of soil conditions influences species survival and growth under varying amounts of rainfall and lengths of dry season.Two-year growth and mortality of 49 tree species were evaluated in four sites across Panama, representing a soil fertility-rainfall matrix. Despite strong contrasts in environmental conditions, 65% of individual species did not show consistent differences in growth between high- and low-fertility sites or between wet and dry sites. However, early growth and survival were more strongly affected by soil fertility than by rainfall patterns for the second-largest group; 30% of the species grew significantly better in both high-fertility sites than in both low-fertility sites, compared to 6% in both wet sites vs. both dry sites. In the two high-fertility sites, growth of 47% and 69% of the species was better than their across-site means. On the other hand, 55% and 73% of the species grew significantly slower than their across-site averages in the two low-fertility sites.Survival did not appear to be associated to either soil fertility or rainfall. In each site, only a few species had a significantly higher or lower within-site survival than across-site survival.Diversifying the choice of tree species increases the options for reforestation strategies that match species characteristics to local site conditions and to the objectives and management possibilities of landholders. Testing the performance of potential species under different site conditions in screening trials is paramount, both to inform selection from among the vast diversity of tree species in the tropics that show good growth and survival under different local site conditions and to filter out unsuitable species and avoid early failure of the reforestation effort.  相似文献   
50.
Landscape Ecology - Tropical forest loss has a major impact on climate change. Secondary forest growth has potential to mitigate these impacts, but uncertainty regarding future land use, remote...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号